BT-I/D-19

31044

BASIC ELECTRICAL ENGINEERING Paper : ES-101A

Opt. (II)

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt five questions in all, selecting at least one question

from each unit.

UNIT-I

1. (a) For the circuit shown in Fig. 1, find the current flowing through the 10 Ω resistor.

Fig. 1.

(b) Using Norton's theorem, find the voltage drop across 12Ω resistance for the circuit shown in Fig. 2.

31044/1,250/KD/997

[P.T.O. 18/12 2. (a) For the circuit shown in Fig. 3, find the current in each branch by nodal method.

- (b) For the circuit shown in Fig. 4, find out
 - (i) Thevenin equivalent across terminal A and B.

3

(ii) Current flowing through 6 Ω .

UNIT-II

3. (a) Find the average value and r.m.s. value for the waveform shown in Fig. 5.

Fig. 5.

31044/1,250/KD/997

2

	(b)	For a series RLC circuit, find f_L and f_C .	
4.	(a)	Find the difference of two voltages given as	
		$V_1 = 15 \sin(\omega t)$	
		$V_2 = 20 \sin{(\omega t - 60^\circ)}$.	
	(b)	Draw and explain resonance curve and bandwidth curve for parallel RLC resonance circuit.	
		UNIT-III	
5.	(a)	Describe Three-phase star connection with diagrams.	
		8	
	(b)	Draw and explain exact and approximate equivalent	
		circuit of a single phase transformer.	
6.	(a)	Describe the measurement of 3-phase power by 2-watt	
		meter method for delta connection.	
	(b)	Explain OC and SC tests in detail.	
UNIT-IV			
7.	(a)	Explain the construction and working of a three-phase	
		induction motor. http://www.kuonline.in 8	
	(b)	Describe the working principle of Switch Fuse Unit	
		(SFU). 7	
8.	(a)	Explain the construction and working of a dc machine	
		with commutator action.	
	(b)	Differentiate between MCB, ELCB and MCCB. 7	